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Morphological properties of strained epitaxial films are examined through a mesoscopic approach developed
to incorporate both the film crystalline structure and standard continuum theory. Film surface profiles and
properties, such as surface energy, liquid-solid miscibility gap, and interface thickness are determined as a
function of misfit strains and film elastic modulus. We analyze the stress-driven instability of film surface
morphology that leads to the formation of strained islands. We find a universal scaling relationship between the
island size and misfit strain which shows a crossover from the well-known continuum elasticity result at the
weak strain to a behavior governed by a “perfect” lattice relaxation condition. The strain at which the crossover
occurs is shown to be a function of liquid-solid interfacial thickness, and an asymmetry between tensile and
compressive strains is observed. The film instability is found to be accompanied by mode coupling of the
complex amplitudes of the surface morphological profile, a factor associated with the crystalline nature of the
strained film but absent in conventional continuum theory.
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I. INTRODUCTION

The most recent area of focus in thin-film epitaxy has
been on exploiting the growth and control of strained solid
films to develop specific nanostructure features that can be
used in optoelectronic device applications. These structures
include junctions, quantum wells, and multilayers/
superlattices for which planar interfaces are highly desired.
On the other hand, epitaxially grown films are usually
strained due to the lattice mismatch with the substrate, lead-
ing to a variety of stress-induced effects and structures either
on the film surface or across the interfaces, such as islands
�quantum dots� or nanowires.1–4 A wide range of device ap-
plications results from such heterostructures, including light-
emitting diodes, diode lasers, detectors, field-effect transis-
tors, etc.,1,5 with the major technical concerns being the
requirement of long-range ordering, size regularity, place-
ment, and defect control.

Much progress has been made in understanding film
growth above the surface-roughening temperature, particu-
larly the formation and evolution of coherent nanostructures.
The evolution sequence often involves many physical pro-
cesses, including an initial morphological instability of the
Asaro-Tiller-Grinfeld �ATG� type6–10 that results in surface
ripples and undulations,11,12 the formation of islands, and the
evolution from prepyramid to faceted shape �e.g., �105�-
faceted pyramids for SiGe �Ref. 13��, subsequent islands
coarsening,14–16 further shape transitions from pyramids to
domes14 or to unfaceted prepyramids,16 and the nucleation of
misfit dislocations for very large islands.17,18

To understand these complex processes of nanostructure
self-assembly, most of current theoretical efforts are based on
either continuum diffusion and elasticity theories or atomis-
tic simulation methods that focus on a certain single scale of
description. In standard continuum theory, the film morphol-

ogy is described by a coarse-grained, continuum surface
profile,8,9 or phase fields,19–21 with evolution governed by
the relaxation of continuum elastic and surface free ener-
gies. Quantitative results have been obtained to reveal fun-
damental mechanisms of film nanostructure formation ob-
served in a variety of experimental systems. Recent work
has focused on morphological instabilities of strained
films8–10 or superlattices,22–24 the coupling to alloy film
composition inhomogeneity,25–29 island evolution,30,31

ordering and coarsening,19–21,32–34 as well as island growth
on nanomembranes/nanoribbons.35,36 Such continuum ap-
proaches give a long-wavelength description of the system,
which has a large computational advantage over microscopic
approaches but naturally neglects many microscopic crystal-
line details that can have a significant impact on film struc-
tural evolution and defect dynamics. This can be remedied
via atomistic simulations such as kinetic Monte Carlo �MC�
methods. Recent progress includes identifying detailed prop-
erties of strained islands such as morphology, density, and
size distribution,37,38 and the evolution of complex surface
structures including dots, pits, and grooves as a function of
growth conditions in both two39 and three40 dimensions.
However to simulate strained film growth, novel approaches
�e.g., Green’s-function method38,39 or local approximation
technique41� are required to incorporate strain energy via
long-range elastic interactions, which usually limit atomistic
studies to small length and time scales.

Recently an approach coined phase-field-crystal �PFC�
modeling has been developed to incorporate atomic-level
crystalline structures into standard continuum theory for pure
and binary systems.42–45 This model can be related to other
continuum field theories such as classical density-functional
theory46–50 and the atomic density function theory.51 The
PFC model describes the diffusive, large-time-scale dynam-
ics of the atomic number density field �, which is spatially
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periodic on atomic length scales. By including atomic
scale variations, the physics associated with elasticity, plas-
ticity, multiple crystal orientations, and anisotropic properties
�of, e.g., surface energy and elastic constants� is naturally
incorporated. This approach has been applied to a wide va-
riety of phenomena including glass formation,52 climb and
glide dynamics of dislocations,53 epitaxial growth,42,43,45,54–56

premelting at grain boundaries,57,58 commensurate/
incommensurate transitions,59,60 sliding friction
phenomena,61 the yield strength of polycrystals,42,43,62,63 and
crystal interfaces and growth.64,65 For strained film epitaxy,
the basic sequence of film evolution observed in
experiments, i.e., morphological instability
→nanostructure / island formation→dislocation nucleation
and climb, has been successfully reproduced in PFC
simulations.43,45,54,55 Unfortunately computational simula-
tions of the original PFC model are limited by the need to
resolve atomic length scales. This limitation can be over-
come by deriving the corresponding amplitude-equation for-
malism as developed by Goldenfeld et al.66,67 to effectively
describe the system via the “slow”-scale amplitude and phase
of the atomic density � while at the same time retaining the
key characters �e.g., elasticity, plasticity, and multiple crystal
orientations� of the modeling. Very recently such a mesos-
copic approach has been extended by Yeon et al.68 to incor-
porate a slowly varying average density field which is essen-
tial to account for the liquid-solid coexistence and a
miscibility gap, and also by Elder et al.69 to describe the
binary-alloy systems for both two-dimensional �2D� hexago-
nal and three-dimensional �3D� bcc and fcc structures. Ap-
plication of this extended expansion to strained film growth
and island formation has yielded promising results, particu-
larly the determination of a universal size scaling of surface
nanostructures �strained islands�.54 However, in these PFC
studies some key factors for understanding the basic mecha-
nisms of strained film evolution are still missing and yet to
be addressed, including film surface properties �such as
strain-dependent surface tension and width� and the effect of
the sign of film/substrate misfit strain, as will be clarified in
this work.

In this paper we provide a complete formulation for such
multiple-scale analysis of single-component, strained film
epitaxy. Compared to our previous work54 which is also
based on the amplitude-equation formalism established for
two-dimensional high-temperature growth, here we provide
more systematic study of various strained film properties in-
cluding surface energy, film surface �or liquid-film interface�
thickness, and liquid-film miscibility gap that are identified
for different misfit strains �both tensile and compressive�.
Furthermore, morphological instabilities of the strained films
and the corresponding behavior of island formation are sys-
tematically investigated, showing the important effects of
misfit strains �both magnitude and sign� and film surface
properties that are absent in previous work. A main feature of
our multiscale �mesoscopic/microscopic� approach is that it
can maintain the efficiency advantage of the continuum
theory through coarse-grained amplitudes, without losing
significant effects due to the discrete nature of the crystalline
film structure.

II. AMPLITUDE-EQUATION FORMALISM
FOR STRAINED FILM EPITAXY

In the PFC model,42,43,45 the free-energy functional F can
be derived from the classical density-functional theory of
freezing45 and be expressed in terms of a dimensionless
atomic number density n= ��− �̄� / �̄, i.e.,

F/�̄kBT =� dr�n

2
�B� + Bx�2R2�2 + R4�4��n −

�

3
n3 +

v
4

n4	 ,

�1�

where �̄ is the average density, T is the temperature, R
represents the lattice spacing, B� is related to the isothermal
compressibility of the liquid phase, Bx is proportional to the
bulk modulus of the crystalline state, and � and v are phe-
nomenological parameters �chosen as �=1 /2 and v=1 /3 in
the following calculations for simplicity�. The liquid-solid
transition is controlled by a parameter �= �Bx−B�� /Bx which
is related to temperature difference from the melting point.
The solid phase exists at ��0, with hexagonal/triangular
crystalline symmetry in 2D and bcc in 3D. Based on the
assumption of conserved system dynamics, i.e., �n /�t
=��2�F /�n with � the mobility, the PFC dynamic equation
is given by

�n/�t = ��2�B�n + Bx�R4�4 + 2R2�2�n − �n2 + vn3� . �2�

Defining a length scale l0=R, a time scale �0=R2 /�Bx, and
n→
v /Bxn, we obtain the rescaled equation

�n/�t = �2�− �n + ��2 + q0
2�2n − gn2 + n3� , �3�

where g=� /
vBx, q0=1, and the symbol q0 is retained for
the clarity of presentation.

For the epitaxial system of interest, we consider a system
configuration composed of a semi-infinite strained crystalline
film and a coexisting homogeneous liquid state, which are
separated by a time-evolving interface �i.e., film surface�. To
access the slow time and length scales of the film surface
profile we introduce a standard multiple-scale expansion of
the PFC �Eq. �3�� and derive the associated amplitude equa-
tions, with detailed procedures given in Refs. 66–68. For a
2D system with the film surface normal to the y direction, the
atomic density field n is expanded in both liquid and solid
regions as the superposition of a spatially/temporally varying
average local density n0 �for the zero wave-number mode�
and three hexagonal base modes, i.e.,

n = n0�X,Y,T� + �
j=1

3

Aj�X,Y,T�eiqj
0·r + c.c., �4�

where both n0 and complex amplitudes Aj are slowly varying
variables �with Aj =0 in the liquid region� and q j

0 represent
the three hexagonal basic wave vectors

q1
0 = q0�−


3

2
x̂ −

1

2
ŷ, q2

0 = q0ŷ, q3
0 = q0�
3

2
x̂ −

1

2
ŷ .

�5�

This expansion �4� implies the separation of slow scales X
=�1/2x, Y =�1/2y, and T=�t for n0 and Aj �and hence the film
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surface profile� from the underlying crystalline structure, at
the limit of small � or high-temperature growth. The corre-
sponding amplitude equations are given by �in the form of
Model C �Ref. 70��

�Aj/�t = − q0
2�F/�Aj

�, �6�

�n0/�t = �2�F/�n0, �7�

where the effective potential F �a Lyapunov functional� is
written as

F =� dr��− � + 3n0
2 − 2gn0��

j=1

3

�Aj�2

+ �
j=1

3

���2 + 2iq j
0 · ��Aj�2

+
3

2�
j=1

3

�Aj�4 + �6n0 − 2g��A1A2A3 + A1
�A2

�A3
��

+ 6��A1�2�A2�2 + �A1�2�A3�2 + �A2�2�A3�2�

−
1

2
�n0

2 +
1

2
���2 + q0

2�n0�2 −
1

3
gn0

3 +
1

4
n0

4	 . �8�

Note that the operator ��2+2iq j
0 ·�� preserves the rotational

covariance of these amplitude equations.71 This effective free
energy describes a first-order phase transition from a liquid
�Aj =0� to a solid state �Aj�0� and incorporates elasticity
though the operator ��2+2iq j

0 ·��, as discussed in Ref. 69. In
addition the terms containing n0 incorporate a miscibility gap
for the density at liquid-solid coexistence.

For a hexagonal lattice, the equilibrium wave numbers
along x and y directions are qx0

=
3q0 /2 and qy0
=q0 for the

undistorted, zero-misfit bulk lattice. For strained films during
epitaxy �with distorted hexagons/triangles�, the misfit �m is
determined by

�m =
a0 − a

a
=

qx

qx0

− 1, �9�

where a0=2	 /qx0
is the stress-free bulk film lattice constant

and a=2	 /qx is the lattice constant of the strained film. The
complex amplitudes Aj should then be expressed by

A1 = A1�e
−i��xx+�yy/2�, A2 = A2�e

i�yy, A3 = A3�e
i��xx−�yy/2�,

�10�

where amplitudes Aj� are complex, �x=qx0
�m=
3q0�m /2, and

the value of �y ���x� is determined by the lattice relaxation
along the film growth direction y �corresponding to the Pois-
son relaxation in continuum elasticity theory�. Since both Aj
and Aj� are slowly varying quantities, �x and �y and the misfit
strain ��m� should also be sufficiently small. Substituting Eq.
�10� into Eqs. �6�–�8�, the amplitude equations for strained
films are then

�tA1� = − q0
2��− � + 3n0

2 − 2gn0 + ��x
2 + �y

2 − i�
3q0 + 2�x��x

− i�q0 + �y��y − 
3q0�x − �x
2 − q0�y/2 − �y

2/4�2�A1�

+ �6n0 − 2g�A2�
�A3�

� + 3A1���A1��
2 + 2�A2��

2 + 2�A3��
2�� ,

�11�

�tA2� = − q0
2��− � + 3n0

2 − 2gn0 + ��x
2 + �y

2 + 2i�q0 + �y��y

− 2q0�y − �y
2�2�A2� + �6n0 − 2g�A1�

�A3�
� + 3A2���A2��

2

+ 2�A1��
2 + 2�A3��

2�� , �12�

�tA3� = − q0
2��− � + 3n0

2 − 2gn0 + ��x
2 + �y

2 + i�
3q0 + 2�x��x

− i�q0 + �y��y − 
3q0�x − �x
2 − q0�y/2 − �y

2/4�2�A3�

+ �6n0 − 2g�A1�
�A2�

� + 3A3���A3��
2 + 2�A1��

2 + 2�A2��
2�� ,

�13�

�tn0 = �2��− � + ��2 + q0
2�2�n0 − gn0

2 + n0
3 + �6n0 − 2g���A1��

2

+ �A2��
2 + �A3��

2� + 6�A1�A2�A3� + A1�
�A2�

�A3�
��� . �14�

These amplitude equations describe a strained system and
will be used to study morphological instabilities of a liquid-
crystal surface under strain. In the next section, steady state
or base solutions will be obtained for a planar liquid-crystal
interface under strain. In Sec. IV the stability of these planar
solutions to small perturbations at the surface will be exam-
ined.

III. BASE STATE SOLUTION: FILM
SURFACE PROPERTIES

We first construct a base state involving a planar film
surface �i.e., a coexisting liquid-crystal interface�. The corre-
sponding amplitudes Aj

0 and density n0
0 are then only a func-

tion of the normal direction y, and hence the amplitude Eqs.
�11�–�14� can be simplified as

�Aj
0/�t = − q0

2�F0/�Aj
0�, � n0

0/�t = �y
2�F0/�n0

0, �15�

where

F0 =� dr��− � + 3n0
02 − 2gn0

0��
j=1

3

�Aj
0�2 +

3

2�
j=1

3

�Aj
0�4 + ���y

2

− i�q0 + �y��y − 
3q0�x − �x
2 − q0�y/2 − �y

2/4�A1
0�2 + ���y

2

+ 2i�q0 + �y��y − 2q0�y − �y
2�A2

0�2 + ���y
2 − i�q0 + �y��y

− 
3q0�x − �x
2 − q0�y/2 − �y

2/4�A3
0�2 + �6n0

0 − 2g��A1
0A2

0A3
0

+ A1
0�A2

0�A3
0�� + 6��A1

0�2�A2
0�2 + �A1

0�2�A3
0�2 + �A2

0�2�A3
0�2�

−
1

2
�n0

02 +
1

2
���y

2 + q0
2�n0

0�2 −
1

3
gn0

03 +
1

4
n0

04	 . �16�

The equilibrium profile for the base state �with solid/
liquid coexistence� is given in Fig. 1, corresponding to non-
growing, stationary films of different misfit strains �m, and
elastic constants �as determined by Bx�. The amplitudes and
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n0
0 can be used to reconstruct the full density field n via Eq.

�4�, as shown in Fig. 2. This figure highlights the increase in
interfacial width as the magnitude of elastic moduli �i.e., Bx�
increases. Since the stationary solution of Eqs. �15� and �16�
cannot be obtained analytically, the results shown were ob-
tained by numerical solutions based on a pseudospectral
method. To apply the periodic boundary condition, we set the
initial configuration as a pair of symmetric liquid-solid inter-
faces located at y=Ly /4 and 3Ly /4, respectively, with Ly the
one-dimensional �1D� system size which is chosen up to Ly
=8192 in our calculations so that these two interfaces are
sufficiently far apart from each other and thus evolve inde-
pendently. In the numerical algorithm adopted, the second-
order Crank-Nicholson time stepping scheme is used for the
linear terms while a second-order Adams-Bashford explicit
method is applied for the nonlinearities. A grid spacing 
y
=�0 /8 �i.e., eight grid points per basic wavelength �0
=2	 /q0� is chosen in most of calculations, although similar
results have been obtained with much larger 
y. Relatively
large time steps 
t can be adopted without losing numerical
stability: We use 
t=0.5 �or even 1� for Bx�10 and 
t
=0.2 for Bx=1 with sharp interface. We also use the same
algorithm and parameters in the stability/perturbation calcu-
lations given in Sec. IV.

For finite misfits the amplitudes �A1
0�= �A3

0�� �A2
0� and their

difference increases with �m as shown in Fig. 3. This corre-
sponds to a triangular structure distorted along the y direc-
tion �the surface normal� and the degree of distortion in-

creases with misfit strain. Also as shown in Fig. 1, for larger
value of Bx which corresponds to smaller bulk modulus �as
we calculate based on one-mode approximation; see Sec.
IV�, the interface or film surface is more diffuse �i.e., with
larger interface width� but with a narrower coexistence re-
gion �i.e., smaller but nonzero miscibility gap�. This can also
be seen in Fig. 4, which shows the liquidus and solidus res-
caled density n0

liq, n0
sol, as well as the miscibility gap 
n0

=n0
sol−n0

liq as a function of misfit �m. The size of miscibility
gap decreases with the increasing magnitude of misfit and
shows slight asymmetry with respect to the misfit sign as a
result of different nonlinear elastic effects on liquid-solid co-
existence property for tensile and compressive strains.

We also calculate the surface tension  as a function of
misfit strain since it is one of the important factors for deter-
mining film stability and island formation. Surface energy is
known to play a stabilization role on film evolution and for
simplicity is often approximated as misfit independent in
many strained film studies.8–10,19–29 However in the presence
of a strain field, the surface energy is known to vary as a
result of intrinsic surface stress �0 and is usually expanded
up to second order in terms of strain tensor uij �with i , j the
film surface coordinate indices� in linear elasticity theory,2,72

i.e.,

 = 0 + �ij
0 uij +

1

2
Sijkluijukl, �17�

where Sijkl are the surface excess elastic moduli. Both �ij
0 and

Sijkl can be either positive or negative.2 For the 1D surface
considered here, strain uxx=�m and hence Eq. �17� gives 
=0+�xx

0 �m+Sxxxx�m
2 /2, which is consistent with our

amplitude-equation calculations shown in Fig. 5. Data fitting
of our numerical results yield 0=6.82�10−3, �xx

0 =−4.77
�10−4, and Sxxxx /2=−9.76�10−2 for Bx=1 and 0=2.20
�10−4, �xx

0 =−3.72�10−5, and Sxxxx /2=−2.06�10−2 for Bx

=10 �all in dimensionless unit�, showing smaller surface en-
ergy for larger value of Bx �with larger surface width�. These
results indicate that for the parameters chosen, both the in-
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trinsic surface stress �xx
0 and excess elastic moduli Sxxxx are

negative, leading to the decrease in surface energy with in-
creasing magnitude of misfit strain. In addition the tensile
surface stress is rather weak which can explain the weak
asymmetry of  between tensile and compressive strained
films.

IV. MORPHOLOGICAL INSTABILITY
AND ISLAND SCALING

For strained films with nonzero misfit, a morphological
instability of film surface is known to develop as a result of
strain energy relaxation, leading to surface undulations and

then the formation of surface nanostructures such as strained
islands. Such an instability can be revealed via a linear
analysis of amplitude equations given above. We can expand
the amplitudes in Fourier series as

Aj��x,y,t� = Aj
0�y� + �

qx

Âj�qx,y,t�eiqxx, �18�

n0�x,y,t� = n0
0�y� + �

qx

n̂0�qx,y,t�eiqxx, �19�

where Aj
0�y� and n0

0�y� are the planar base solutions discussed

in the previous section and the perturbed quantities Âj and n̂0
obey the following linearized equations,

�tÂ1�qx,y,t� = − q0
2��− � + 3n0

02 − 2gn0
0 + ��y

2 − i�q0 + �y��y − qx
2 + �
3q0 + 2�x�qx − 
3q0�x − �x

2 − q0�y/2 − �y
2/4�2

+ 6��A1
0�2 + �A2

0�2 + �A3
0�2��Â1�qx,y,t� + 6A1

0�A2
0�Â2�qx,y,t� + A3

0�Â3�qx,y,t�� + 3A1
02Â1

��− qx,y,t� + ��6n0
0 − 2g�A3

0�

+ 6A1
0A2

0�Â2
��− qx,y,t� + ��6n0

0 − 2g�A2
0� + 6A1

0A3
0�Â3

��− qx,y,t� + ��6n0
0 − 2g�A1

0 + 6A2
0�A3

0��n̂0�qx,y,t�� , �20�

�tÂ2�qx,y,t� = − q0
2��− � + 3n0

02 − 2gn0
0 + ��y

2 + 2i�q0 + �y��y − qx
2 − 2q0�y − �y

2�2 + 6��A1
0�2 + �A2

0�2 + �A3
0�2��Â2�qx,y,t�

+ 6A2
0�A1

0�Â1�qx,y,t� + A3
0�Â3�qx,y,t�� + 3A2

02Â2
��− qx,y,t� + ��6n0

0 − 2g�A3
0� + 6A1

0A2
0�Â1

��− qx,y,t�

+ ��6n0
0 − 2g�A1

0� + 6A2
0A3

0�Â3
��− qx,y,t� + ��6n0

0 − 2g�A2
0 + 6A1

0�A3
0��n̂0�qx,y,t�� , �21�

�tÂ3�qx,y,t� = − q0
2��− � + 3n0

02 − 2gn0
0 + ��y

2 − i�q0 + �y��y − qx
2 − �
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0�Â2�qx,y,t�� + 3A3

02Â3
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FIG. 4. �Color online� �a� The equilibrium densities n0
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The stability of the base planar film surface is examined

by introducing initial small random perturbations into Âj and
n̂0, and solving numerically the initial value problem defined
by Eqs. �20�–�23�, given a specific value of qx. The numeri-
cal algorithm introduced in Sec. III is employed, with the use
of a pseudospectral method and periodic boundary condi-
tions.

For nonzero misfit, within a certain range of wave number

qx the initial perturbations of Âj and n̂0 grow with time
around the liquid-solid interface while they always decay to
zero far from the interface region, showing the stability of
both the solid and liquid bulks. This interface instability re-
sults in the formation of islands or mounds at the liquid-solid
interface, as shown in Fig. 6. This figure was obtained by
reconstructing full density field n from the amplitudes with
wave number qx of maximum instability �based on Eq. �4��.
A typical example of the dynamics of the amplitudes that
gives rise to this instability is given in Fig. 7�a�. We then
calculate the perturbation growth rate ��qx�, noting that

�Âj� , �n̂0��e�t. This process is repeated for a range of pertur-
bation wave number qx and also for various misfits �m. Some
results of the dispersion relation are shown in Fig. 7�b�, for
�=0.02 and Bx=10. Previous work of continuum elasticity or
phase-field theory has predicted various forms of dispersion
relation, including ���3q3−�4q4 �for surface-diffusion
dominated process8–10�, ��−�2q2+�3q3−�4q4 �if consider-
ing wetting effects33,73�, ���1q−�2q2 �in the case of
evaporation-condensation8,19,20�, or ���2q2−�3q3 �for
bulk-diffusion dominated case55�, with q the wave number
and �i �i=1, . . . ,4� the model-dependent coefficients that are
usually a function of surface tension and elastic moduli.
However, none of these forms fits our dispersion data, which
instead can be well fitted only by a fourth-order polynomial
of qx for all range of wave numbers, similar to a combination
of all the above forms. This is not unexpected, given that all
factors of surface diffusion, bulk diffusion, wetting effects,
and evaporation/condensation are naturally incorporated in
the PFC model and cannot be easily decoupled. This can be

seen through the fact that the PFC modeling of epitaxial
growth involves the coexistence of liquid-solid interface that
buckles and evolves, and thus naturally involves the diffu-
sion processes along the interface and between liquid region
and solid film, and also the variation in material properties
such as surface/interface energy and elastic relaxation across
the interface �i.e., the wetting effects�. We expect that an
important parameter controlling these different processes
would be �, the temperature distance from the melting point.
The � �or temperature� dependence of properties of system
relaxation has been known for pattern formation systems and
is also seen in our PFC studies. Here we focus on high-
temperature regime where the amplitude-equation represen-
tation is most relevant and effective, and hence choose �
=0.02 which is different from other studies with larger � and
hence lower growth temperature �e.g., �=0.1 in Ref. 55�. For
such small � �high-temperature� surface-diffusion process is
more prominent and coupled with the bulk-diffusion process,
a phenomenon that might be weakened or absent in low-
temperature growth �e.g., in Ref. 55 only bulk-diffusion be-
havior has been identified in the dispersion relation obtained
from the original PFC equation�.

The development of surface perturbations and instability
can be characterized by an evolution time scale �, which can
be approximated via the inverse of maximum perturbation
growth rate �max and is found to scale as �m

−8 or �m
−4 in con-

tinuum elasticity theory with the assumed mass transport
mechanism dominated by surface diffusion or evaporation-
condensation, respectively.8,10 However, our calculations
yield results more complicated than this single power-law
behavior, as shown in Fig. 7�c�, which can also be expected
from the coupling of various mass transport processes in this
modeling as discussed above. Our results show that the time
scale � decreases with misfit strain �m since the �m provides
the driving force for the morphological instability. � is also
found to significantly decreases when Bx increases. For ex-
ample, at a given misfit, � is typically one or two orders of
magnitude larger for Bx=1 compared with Bx=10. This dif-
ference is most likely due to the significant decrease in sur-
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FIG. 6. Reconstruction of full density field n for an interface
profile showing island formation, with a 3% misfit at �=0.02. �a�
corresponds to density n at t=125 000 for Bx=1 and the maximum
instability wave number qx=0.0184 while �b� corresponds to n at
t=2000 for Bx=10 and qx=0.026.
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face energy and increase in interfacial thickness as Bx is in-
creased, as shown in Figs. 5 and 1, respectively.

The maximum of the growth rate determines the charac-
teristic wave number QI for the instability and hence the
characteristic wave number of the island/mound formation
on the film surface. We plot in Fig. 8�a� the relation of this
instability/island wave number QI vs misfit strain �m, for
different values of Bx and for both compressive ��m�0� and
tensile ��m�0� films. For each value of Bx we can identify
two regions, corresponding to a quadratic behavior of QI
��m

2 at small misfits �see also the inset of Fig. 8�b�� and a
linear dependence of QI on �m for large enough strains. Such
quadratic scaling in the small misfit limit is consistent with
the well-known results of continuum theory including all
different assumptions of dominant mechanisms such
as surface diffusion, evaporation-condensation, and wetting
effects.8–10,30,33,73 However, this �m

2 scaling result differs
from the experimental findings in SiGe/Si�001� growth,11,12

which indicate the linear behavior QI��m for the stress-
driven surface instability and coherent epitaxial islands. Al-
though this observation of a linear relationship is qualita-
tively similar to what we obtain above for large enough
misfits, it should be cautioned that the experimental systems

involve more complicated factors related to the SiGe alloy-
ing nature that is not considered here, particularly the atomic
mobility difference between the two film components which
was verified by recent first-principle calculations74 and was
believed to play a key role on island size scaling.27,75

For the single-component films studied here the crossover
from the quadratic scaling at the continuum weak-strain limit
to linear behavior at high strains is most likely due to the
discrete nature of the crystalline lattice that is implicitly in-
cluded in the amplitude formulation. It is known �and veri-
fied in direct simulations of PFC, Eq. �3� �Refs. 43, 45, and
54�� that at late times the instability to form islands or
mounds leads to the nucleation of dislocations around the
edges of islands or in the valleys between the mounds. These
dislocations nucleate to relieve strain in the film and appear
at earlier times for larger misfit strains. Here we define a
length scale, �R, for “perfect” relaxation such that if the dis-
locations nucleate at this distance apart, strain in the film will
be completely relieved �aside from the strain induced by the
dislocations themselves�. We can then make the assumption
that if the continuum prediction for most unstable wave-
length is smaller than �R, continuum theory will break down.
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To evaluate �R consider a 1+1-dimensional film; assume Lx

being the lateral length of film surface and by definition we
have Lx=Na=Ma0, where N is the number of atoms in
strained lattice, M is the atom number for unstrained state
after dislocations nucleate, and a and a0 are the correspond-
ing lattice constants already defined in Eq. �9�. Thus from
Eq. �9� for the definition of misfit, we obtain �m= �N
−M� /M, leading to the average distance between disloca-
tions �R=L / �N−M�=L / �M��m��=a0 / ��m�, with the associated
wave number QR=qx0��m� �plotted as a dashed line in Fig.
8�a��. Assuming that on average at least one dislocation will
appear at each island edge/valley, this wave number QR will
then be the upper limit imposed by the discrete nature of the
lattice, as it would be unphysical for islands with size smaller
than �R to appear which would instead cause the “over-
relaxation” of the film lattice. Our results of island wave
number QI for different values of Bx �=10,20,100� all con-
verge to this limit at large misfit strains �except for Bx=1
which will be discussed below�.

This perfect relaxation condition is expected to be
met at large enough misfits but not at small strains
where dislocations appear at far late stage after islands
form, leading to the crossover phenomenon between two
scaling regimes given in Fig. 8. This crossover occurs
when QI�of small misfit limit�=QR. As stated above, at
small �m we can recover the result of continuum theory
which predicts QI� �E /��m

2 �with E the Young’s
modulus�.8–10 In our calculations based on the PFC model
and amplitude equations, we evaluate E from a one-
mode approximation,43,45 E=BxAmin

2 /2, where Amin=4�g
−3n0+
g2+24n0g−36n0

2+15�m� /15. Using the results of 
given in Sec. III, we can fit the small misfit data well into a
form QI=4E�m

2 /3 �for all values of Bx; see the inset of Fig.
8�b��. Therefore, the misfit ��m

� � and island wave number
�QI

�� at the crossover can be determined via QI
�=4E�m

�2 /3
=QR=qx0�m

� , resulting in �m
� =3qx0 /4E and QI

�=3qx0
2 /4E.

Defining rescaled quantities Q̂=QI /QI
� and �̂m=�m /�m

� , we
can then scale all the data from different conditions �e.g.,
films of different elastic constants, for Bx�1� onto a single
universal scaling curve accommodating all range of misfit
strains, for both compressive and tensile films �see Fig. 8�b��.
The crossover misfit strain �m

� can be very small ��2%,
depending on, e.g., film elastic properties�, showing the
breakdown of continuum approach even at relatively large
scales.

Note that although this linear behavior due to perfect lat-
tice relaxation and the scaling crossover have been observed
in our previous work,54 it was limited to compressive
strained films and not-too-large misfits. However, the more
generalized study given here shows a small deviation from
the limit of perfect relaxation for small value of Bx, as indi-
cated in Fig. 8�a� with island wave numbers of Bx=1 lying
above such upper limit �the dashed line� when the magnitude
of mismatch ��m� exceeds 5% �for tensile films� or 6% �com-
pressive�. Similar deviation can be seen in the corresponding
scaling plot of Fig. 8�b�. Nevertheless, at large misfits the
linear scaling behavior is still maintained, which is qualita-
tively different from the quadratic scaling at the small strain
limit. Based on the discussions given above for perfect re-
laxation condition, it is expected that QI�QR occurs only
when some of the island edges would be dislocation free
even at late evolution times. The condition for this scenario
is not clear but our results suggest that this may occur when
the liquid-solid interface �or film surface� is sharp enough.
As given in Fig. 9, the interface width W decreases with the
value of Bx and is particularly small at Bx=1 �with W
�13.5
y for both tensile and compressive films, less than
two-lattice spacing� as compared to others. It could then be
expected that details of film morphological evolution, includ-
ing instability and island formation, would be different for
such sharp interface, as somewhat indicated in Fig. 8. Fur-
ther studies are needed to clarify this special scenario of
strained film evolution.
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Figure 9 also yields the effect of finite interface width W
on the island size �or wave-number� scaling. We find 1 /QI

�

�W, i.e., a linear relation between crossover instability
wavelength �=2	 /QI

�� and the interface thickness. This
is consistent with most recent results of direct PFC
simulations55 which indicate that the discrepancy or cross-
over between the classical elasticity result of quadratic scal-
ing of QI and the linear behavior identified in the PFC mod-
eling could be attributed to the finite thickness of the
interface, a fact that is neglected in the classical continuum
theory. As seen in Fig. 9, when W→0 �i.e., the assumption
adopted in continuum elasticity theory�, we have QI

�→� and
hence recover the continuum theory prediction of QI��m

2 for
the whole range of misfit strain, as expected. Corresponding
to real experimental systems, Fig. 9 predicts that at constant
growth temperature �same � value�, the liquid-solid interface
thickness varies with film elastic modulus �or the value of
Bx�, and for different film materials the crossover island size
separating two island scaling regimes increases linearly with
the interface thickness.

Another important feature of our results is the asymmetry
between tensile and compressive films which, however,
becomes distinct only at small enough Bx and large
enough misfits �see Fig. 8 for the data of Bx=1�. Given the
important role played by the surface energy  on film stabil-
ity and evolution, we expect this asymmetric phenomenon of
island wave number to be closely related to the property of 
shown in Fig. 5. The intrinsic surface stress �xx

0 determined
for Bx=1 is an order of magnitude larger than that for Bx

=10, leading to much larger value of surface energy differ-
ence between tensile and compressive strains; also such dif-
ference increases with the magnitude of misfit strain. The
corresponding behavior of surface instability and island for-
mation would then follow the similar trend, as observed in
Fig. 8.

V. FREE-ENERGY ANALYSIS
AND MODE COUPLING

To further elucidate the properties of the strained surface,
it is interesting to analyze the effective free energy F �given

in Eq. �8��. Consider the net change in F relative to that of a
planar interface, i.e.,


F = F − F0, �24�

where F0 is the free energy of the planar interface given in
Eq. �16�. 
F�0 indicates film surface instability against the
initial perturbation while 
F�0 refers to the energy penalty
of any perturbations and hence corresponds to stability of
planar film surface.

Based on the Fourier expansion �Eqs. �18� and �19��, 
F
can be expanded up to second order in the perturbed quanti-

ties Âj and n̂0, i.e.,


F = 
F�1� + 
F�2�. �25�

Detailed expression of the first-order term 
F�1� is given in
the Appendix �see Eq. �A1��. We find numerically 
F�1�

�0 and hence the net energy change 
F is determined by
the second-order quantity


F�2� = 
F+ + 
F−, �26�

where


F− = Lx� dy�
qx

��6n0
0 − 2g��

j=1

3

�Aj
0Âj

��− qx�

+ Aj
0�Âj�qx��n̂0

��qx� + �6n0
0 − 2g��A3

0Â1�qx�Â2�− qx�

+ A2
0Â1�qx�Â3�− qx� + A1

0Â2�qx�Â3�− qx� + c.c.�	
�27�

with Âj�qx�= Âj�qx ,y , t� and n̂0�qx�= n̂0�qx ,y , t�, and the con-
tribution 
F+ is shown in Eq. �A2� of the Appendix.

Given the numerical solution for the perturbed amplitudes
�see Eqs. �20�–�23�� as described in Sec. IV, 
F ��
F�2��
can be approximated via the most unstable characteristic
wave number by substituting the numerical solutions for am-
plitudes at qx= �QI. We find that all terms in Eq. �A2� are
positive, i.e., 
F+�0; both two terms in Eq. �27� yield nega-
tive contribution �noting that usually 6n0

0−2g�0 for liquid-
solid coexistence� so that 
F−�0 and the magnitude of the
last term is much larger than the first one. As shown in Fig.
10, at large enough time 
F− dominates over the stabilizing
terms in 
F+, leading to negative net free-energy change 
F
and thus the film instability. Note that the last term in Eq.
�27�, which dominates 
F−, arises from the second-order
expansion of �A1A2A3+A1

�A2
�A3

�� in the effective free-energy
formula �8�. It represents the coupling of different modes of
complex amplitudes and our numerical results show that it
contributes to the integral of 
F− only in the interface or
film surface region �as the perturbed amplitudes decay fast in
the bulks�. We can then argue that it is the mode coupling of
complex amplitudes at the liquid-solid interface that is
mainly responsible for the morphological instability of the
strained film. Note that the amplitudes of structural profile Aj
are complex and thus their evolution involves an important
process of phase perturbation �or phase winding�. Physically
this phase behavior corresponds to the elastic relaxation of
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the lattice structure and thus the mode coupling property
identified above indicates that the coupling of elastic relax-
ation for different lattice modes �or wave vectors� around the
film surface would be one of the major factors underlying the
film instability and mounding behavior. Such phase behavior
is related to details of crystalline structure, as captured by the
PFC model and the amplitude-equation formalism but not by
the continuum theory. Furthermore, the competition between

F+ ��0� and 
F− ��0� shown in Fig. 10 is consistent with
previous analysis of continuum elasticity theory showing the
competition between film stabilization effects �such as sur-
face energy� and destabilizing factors �mainly elastic
effects�.8–10,25–29 Note also that the above mechanism identi-
fied should be already incorporated in the original PFC �Eq.
�3�� and the associated PFC free energy �Eq. �1�� while the
analysis given here based on the amplitude formulation has
the advantage of being able to single out individual contri-
butions from different lattice modes.

VI. CONCLUSIONS

We have investigated the detailed properties of a strained
film surface, its morphological instability, and the associated
island wave-number scaling through a systematic analysis of
the amplitude-equation formalism based on the phase-field-
crystal model. We identify the amplitude and average density
profiles of liquid-film coexisting interface, the interface
width, miscibility gap, and surface energy �including intrin-
sic surface stress and excess elastic modulus� for various
misfit strains �both magnitude and sign� and film elastic con-
stants �or values of Bx�. The morphological or mounding
instability of the strained film is systematically examined,
showing results absent in all previous continuum elasticity
and phase-field approaches and atomistic modeling. In par-
ticular, we obtain a crossover phenomenon of instability or
island wave-number scaling, from the well-known con-
tinuum, ATG result of QI��m

2 to a linear behavior QI��m at
large enough strains which is identified by an upper limit

imposed by the condition of perfect lattice relaxation. Most
data �of different parameter ranges� can be scaled onto a
universal scaling relation for the whole range of misfit strain,
with some small deviations for very narrow liquid-solid in-
terfaces in the large strain limit. The asymmetry of film prop-
erties between tensile and compressive strains is also ob-
served. Note that although either linear or quadratic scaling
has been reported in experiments �such as SiGe/Si�001�� and
model simulations �e.g., kinetic MC� or continuum theory
�e.g., ATG instability�, the universal scaling relation with
crossover of the two regions has not been found before. We
expect our prediction here to be examined by experiments of
single-component film epitaxy or atomistic simulations with
large enough length and time scales.

Our study highlights an important feature of the amplitude
formulation for strained film epitaxy in that it can simulta-
neously reproduce continuum results �e.g., the ATG instabil-
ity� and reveal significant corrections due to the microscopic
nature of the crystalline structure. Our approach adopts a
mesoscopic-level description of the system, via the ampli-
tudes or envelopes of the slowly varying surface profile for
which the well-developed continuum, mesoscopic theory can
be applied. On the other hand, the crystalline nature of the
strained film is preserved particularly via phase perturbations
of the complex amplitudes that are prominent around the film
surface. The latter has been emphasized through revealing
the breakdown of traditional continuum approaches even at
relatively small misfit stress and the associated crossover ef-
fect of island size scaling, and also through examining the
origin of film instability that is accompanied by mode cou-
pling of complex amplitudes in the liquid-solid interface re-
gion. Our results thus emphasize the importance of multiple-
scale modeling of complex material systems such as the
strained film epitaxy process studied above. Note that al-
though in this paper we focus on 2D hexagonal/triangular
crystal structure, we expect the approach and analysis tech-
nique developed here to be directly extended for other crys-
talline symmetries and other surface directions, such as the
epitaxial growth and island formation in 3D bcc or fcc films
for which we have developed the corresponding amplitude
expansion formulation very recently.69

ACKNOWLEDGMENTS

We are indebted to Kuo-An Wu and Peter Voorhees for
helpful discussions. This work was supported by the Na-
tional Science Foundation under Grants No. CAREER
DMR-0845264 �Z.-F.H.� and No. DMR-0906676 �K.R.E.�.

APPENDIX: FREE-ENERGY EXPANSION

In this appendix the detailed expansion forms of free-
energy difference 
F are presented. For the first-order term

F�1� shown in Eq. �25�, we have
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FIG. 10. �Color online� Time evolution of effective free-energy
density change 
F �per unit volume V=LxLy� of the perturbed
state, with misfit �m=3%, wave number QI=0.026, �=0.02, and
Bx=10. Also included are the positive contribution 
F+ and the
negative contribution 
F−.
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with Âj�0�= Âj�qx=0,y , t� and n̂0�0�= n̂0�qx=0,y , t�. For the second-order terms, the contribution 
F+ is given by
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0�Âj�qx� + Aj

0Âj
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